Classification of Wood Types Based on Wood Fiber Texture Using GLCM - ANN
DOI:
https://doi.org/10.14421/fourier.2025.141.9-20Abstract
In Indonesia, various types of wood grow and develop with various characteristics and benefits. Each type of wood has differences in texture and fiber, to classify it must have sufficient knowledge about the texture and fiber of wood. A wood species identification system is needed to help the classification process. The purpose of this research is to classify Teak Wood, Sengon Wood, Mahogany Wood, and Gmelina Wood which are often sold in Indonesia. The classification method used in this research is Artificial Neural Network with Gray Level Co- occurrence Matrix (GLCM) extraction. Pre-processing stages include Histogram Equalization, filtering, converting images into grayscale form, and data augmentation. Feature extraction of pre-processing results using GLCM is taken, namely contrast, correlation, energy, homogeneity, and entropy. From the research results, classification using Artificial Neural Network was obtained with 46% accuracy, 43% precision, 42.5% recall, and 42% F1-Score with a GLCM inclination angle of 90°. So, this method can be used to classify the types of wood, but it is less accurate because there are still deficiencies in the model.
Downloads
References
S. N. Perpajakan, A. F. Oktaryani, and M. N. Alim, “Analisis Aspek Perpajakan Produk-Produk Perum Perhutani ( Studi Kasus TPK Ngogro dan KBM IHH Surabayaya,” vol. 2, no. 1, pp. 136–143, 2023.
Sahwalita and A. Agusni, “Standardisasi dan Kebersinambungan Tata Kelola Produk Hasil Hutan Bukan Kayu,” Badan Stand. Instrumen LHK Kementeri. Lingkung. Hidup dan Kehutan., vol. 1, no. 3, pp. 9–15, 2022, [Online]. Available: http://majalah.bsilhk.menlhk.go.id/index.php/STANDAR/article/view/31/30
S. Makruf, Iqbal Miftakhul Mujtahid, and Pardamean Daulay, “Implementasi Kebijakan Perlindungan Hutan Di Indonesia,” J. Publicuho, vol. 6, no. 4, pp. 1537–1548, 2023, doi: 10.35817/publicuho.v6i4.298.
U. Adzkia, T. Priadi, and L. Karlinasari, “Evaluation of Drying and Machining Defects of Four Thermo Modified Wood of Tropical Fast Growing Species,” vol. 37, no. 3, pp. 209–222, 2019.
N. Neneng, N. U. Putri, and E. R. Susanto, “Klasifikasi Jenis Kayu Menggunakan Support Vector Machine Berdasarkan Ciri Tekstur Local Binary Pattern,” Cybernetics, vol. 4, no. 02, pp. 93–100, 2021, doi: 10.29406/cbn.v4i02.2324.
N. M. Y. D. Rahayu, M. W. Antara Kesiman, and I. G. A. Gunadi, “Identifikasi Jenis Kayu Berdasarkan Fitur Tekstur Local Binary Pattern Menggunakan Metode Learning Vector Quantization,” J. Nas. Pendidik. Tek. Inform., vol. 10, no. 3, p. 157, Dec. 2021, doi: 10.23887/janapati.v10i3.40804.
H. Hananti and K. Sari, “Perbandingan Metode Support Vector Machine (SVM) dan Artificial Neural Network (ANN) pada Klasifikasi Gizi Balita,” Semin. Nas. Off. Stat., vol. 2021, no. 1, pp. 1036–1043, 2021, doi: 10.34123/semnasoffstat.v2021i1.1014.
S. Nugroho Whidhiasih, Retno Guritman and P. Tri Suprio, “Identifikasi tahap kematangan buah manggis berdasarkan warna menggunakan,” Teknol. Ind. Pertan., vol. 22, no. 2, pp. 82–91, 2012.
I. Fitriaty and Y. A. Mustofa, “Deteksi Penyakit Tanaman Daun Bayam Menggunakan Metode GLCM dan Artificial Neural Network (ANN),” Cosphijournal.Unisan.Ac.Id, vol. 3, no. 1, pp. 2597–9329, 2019, [Online]. Available: https://www.cosphijournal.unisan.ac.id/index.php/cosphihome/article/view/83
W. A. Pangemanan and I. S. K. Idris, “Identifikasi Kualitas Udang Segar Menggunakan Metode Gray Level Co-Occurance Matrix dan Artificial Neural Network,” J. Ilm. Ilmu Komput. Banthayo Lo Komput., vol. 1, no. 2, pp. 72–78, 2022, doi: 10.37195/balok.v1i2.168.
D. Diana Dewi, N. Qisthi, S. S. S. Lestari, and Z. H. S. Putri, “Perbandingan Metode Neural Network Dan Support Vector Machine Dalam Klasifikasi Diagnosa Penyakit Diabetes,” Cerdika J. Ilm. Indones., vol. 3, no. 09, pp. 828–839, 2023, doi: 10.59141/cerdika.v3i09.662.
M. Ariadin and T. A. Safitri, “Perilaku Manajemen Keuangan Pada Umkm Sentra Kerajinan Kayu Di Kabupaten Dompu,” Among Makarti, vol. 14, no. 1, pp. 31–43, 2021, doi: 10.52353/ama.v14i1.203.
E. Melyna, K. S. Nisa, A. Aurel, and L. Fitri, “The effect of alumina (Al2O3) addition on teak powder and polypropylene composite,” J. Tek. Kim., vol. 29, no. 2, pp. 62–70, 2023, [Online]. Available: http://ejournal.ft.unsri.ac.id/index.php/jtk
S. Rulianah, Prayitno, C. Sindhuwati, D. R. A. Ayu, and K. Sa’diyah, “Penurunan Kadar Lignin pada Fermentasi Limbah Kayu Mahoni Menggunakan Phanerochaete chrysosporium,” J. Tek. Kim. dan Lingkung., vol. 4, no. 1, pp. 81–89, 2020, doi: 10.33795/jtkl.v4i1.139.
I. Asa, M. Pellondo’u, N. Riwu Kaho, and W. Seran, “PENGARUH PERBANDINGAN DOSIS MIKORIZA ARBUS KULA TERHADAP PERTUMBUHAN BIBIT JATI PUTIH (Gmelina sp.),” Wana Lestari, vol. 5, no. 02, pp. 294–299, 2023, doi: 10.35508/wanalestari.v5i02.13119.
F. T. Wulandari, R. Amin, and R. Raehanayati, “Karateristik Sifat Fisika dan Mekanika Papan Laminasi Kayu Sengon dan Kayu Bayur,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 10, no. 1, pp. 75–87, 2022, doi: 10.34312/euler.v10i1.13961.
S. Supria, “Sistem Klasifikasi Jenis Jeruk Impor Menggunakan Metode Klasifikasi Logarithmic Generalized Classifier Neural Network (LGCNN),” Techno.Com, vol. 18, pp. 190–202, 2019, doi: 10.33633/tc.v18i3.2374.
R. A. Wijaya, “Peningkatan Hasil Diagnosis Covid-19 Dari Hasil Citra Chest CT-Scan Menggunakan Metode Ekstraksi Ciri Dan Klasifikas,” 2021, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/31040%0Ahttps://dspace.uii.ac.id/bitstream/handle/123456789/31040/16524007 Ryan Andry Wijaya.pdf?sequence=1&isAllowed=y
J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 311–323, 2020, doi: 10.28932/jutisi.v6i2.2688.
M. Furqon, S. Sriani, and L. S. Harahap, “Klasifikasi Daun Bugenvil Menggunakan Gray Level Co-Occurrence Matrix Dan K-Nearest Neighbor,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 6, no. 1, p. 22, 2020, doi: 10.24014/coreit.v6i1.9296.
A. Y. Fikri and R. A. Pramunendar, “Identifikasi Jenis Kayu Menggunakan Learning Vector Quantization Berdasarkan Fitur Tekstur Gray Level Co-Occurrence Matrix,” Univ. Dian Nuswantoro, pp. 1–8, 2015.
Y. N. FUADAH, I. D. UBAIDULLAH, N. IBRAHIM, F. F. TALININGSING, N. K. SY, and M. A. PRAMUDITHO, “Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 10, no. 3, p. 728, 2022, doi: 10.26760/elkomika.v10i3.728.
R. A. Nadir and R. N. Sukmana, “Sistem Prediksi Harga Emas Berdasarkan Data Time Series Menggunakan Metode Artificial Neural Network (ANN),” Digit. Transform. Technol., vol. 3, no. 2, pp. 426–437, 2023, doi: 10.47709/digitech.v3i2.2877.
T. C. W. Landgrebe and R. P. W. Duin, “Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 5, pp. 810–822, 2008, doi: 10.1109/TPAMI.2007.70740.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Intan Karunia Septiani Septiani, Wika Dianita Utami, Nurissaidah Ulinnuha, Dino Ramadhan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.